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SUMMARY

A higher-order �nite analytic scheme based on one-dimensional �nite analytic solutions is used to dis-
cretize three-dimensional equations governing turbulent incompressible free surface �ow. In order to
preserve the accuracy of the numerical scheme, a new, �nite analytic boundary condition is proposed
for an accurate numerical solution of the partial di�erential equation. This condition has higher-order
accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were for-
mulated and derived for �uid in�ow, out�ow, impermeable surfaces and symmetry planes. The derived
boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea
for the derivation of boundary conditions was to use the discretized form of the governing equations
for the �uid �ow simpli�ed on the boundaries and �ow information. To illustrate the in�uence of the
higher-order e�ects at the boundaries, another, lower-order �nite analytic boundary condition, is sug-
gested. The simulations are performed to demonstrate the validity of the present scheme and boundary
conditions for a Wigley hull advancing in calm water. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical methods that have been generally used to discretize partial di�erential equations are
�nite volume, �nite di�erence, and �nite element methods. Another method used to discretize
partial di�erential equations is the �nite analytic method. In this method, the equations are
discretized by analytic methods. The �nite analytic method avoids the truncation error and spu-
rious oscillations produced in the approximation of the di�erential equation. Compared to the
�nite volume method, the �nite analytic method has some advantages. One of these advantages
is the implicit treatment of the terms in the second derivative. Another major advantage is
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that it provides an automatic upwind shift depending on local cell Reynolds number. In order
to discretize three-dimensional elliptic partial di�erential equations (PDEs) analytically, a 27-
point �nite analytic scheme was �rst derived [1]. The scheme is based on a three-dimensional
analytic solution to a three-dimensional viscous �ow �eld. Then, 12-point and 19-point �nite
analytical schemes were introduced [2, 3]. The 12-point �nite analytic scheme was derived
using one- and two-dimensional analytic solutions. The 19-point scheme was derived using
the superposition of the local analytic solutions of the linearized two-dimensional equations.
An 8-point �nite analytic scheme was also derived using a one-dimensional analytic solution
[4]. The schemes in the �nite analytic method have a width of three mesh points in each
coordinate direction. The schemes previously used in the �nite analytic method have been
applied only to elliptic PDEs. In the present research, higher order schemes were derived and
applied to three-dimensional elliptic and hyperbolic PDEs. The values on the cell faces were
interpolated using local analytic solutions having a width of four nodal points. The scheme
had a width of �ve mesh points in each coordinate direction.
There have been many researches about free surface �ow around a ship hull [5–13]. In con-

sidering free surface �ow, wave re�ections at the open boundaries may degrade the accuracy
of the solution. Achieving far �eld predictions of su�cient accuracy for a ship hull is still a
di�cult task. In order to prevent the re�ected waves from spreading, more accurate bound-
ary conditions may be added at the boundaries of the �nite computational domain [14–19].
Neumann and Dirichlet boundary conditions have been widely used in the �eld of ship hy-
drodynamics. In the present study, �nite analytic boundary conditions were developed and
applied to incompressible free surface �ow problems. Finite analytic boundary conditions can
be applied to both elliptic and hyperbolic PDEs. The main purpose of this study is to derive
three-dimensional higher-order �nite analytic scheme and boundary conditions.

2. GOVERNING EQUATIONS OF FLUID FLOW

The vector form of incompressible Reynolds-averaged Navier–Stokes (RANS) equations, the
kinematic boundary conditions, and the pressure Poisson equation are given for a free surface
�ow problem as

@u
@t
+ (∇u) · u= − ∇P + �E∇2u+ [∇u+ (∇u)T] · ∇�E (1)

where

P=p+
z
Fn2

+
2
3
k and �E =

1
Re�

=
1
Re
+ �t

@F
@t
+ u · ∇F =0 (2)

∇2P=
(∇ · u)n

�� − (∇u)T : ∇v+∇2u · ∇�E + [∇u+ (∇u)T] : ∇(∇�E) (3)
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FINITE ANALYTIC BOUNDARY CONDITION 379

The above equations are dimensionless. In Equation (1), Fn is a Froude number used to
normalize the gravity constant, p is a static pressure and k is a turbulent kinetic energy.
�t and Re� represent the eddy viscosity and the e�ective Reynolds number, respectively.
In Equation (2), F is the equation of the surface. Equation (2) represents the kinematic
boundary condition and is used to update the unknown free surface location. The concept
of the material surface is used for the free surface. We assume that the �ow particles on
the upper boundary move up and down vertically. Thus, Equation (2) can be rewritten by
substituting z-coordinate and G(x; y; t) for the surface, F. In Equation (3), the pressure Poisson
equation is derived by taking the divergence of Equation (1) and used to solve the velocity–
pressure coupling problem. Viscous terms and viscosity-related terms are all included in the
right-hand side of Equation (3). When the �rst-order backward scheme is used for the time
derivative term, the continuity equation at time step n+1 is set to zero, while at time step n
it is retained to eliminate the accumulation of numerical errors [19]. The continuity equation
is satis�ed indirectly through the solution of the pressure Poisson equation. The physical
curvilinear component form of RANS equations, the kinematic boundary condition and the
pressure Poisson equation are expressed as [20]

Re�
@u(i)

@�
+ Re�v(j)u

(i)
;(j) =−Re�g(ij) @P@�(j) + g

(jk)

[
u(m);(j)�

(i)
(mk) − u(i);(m)�(m)(jk) +

@u(i);(j)
@�(k)

]

+Re�
@�E
@�(j)

[g(jk)u(i);(k) + g
(ik)u(j);(k) (4)

where

u(i);(k) =
@u(k)

@�(i)
+ u(m)�(k)(im) and �(k)(ij) =

√
gkk√

gii
√gjj �

k
ij − �ik

gkm
gii

√gjj �
m
ij

@G
@t
+ u(1)

@G
@�(1)

+ u(2)
@G
@�(2)

=w (5)

@2P
@�(k)�(i)

g(ik) − g(jk)�(i)(jk)
@P
@�(i)

=
[u(i);(i)]

n

�� − u(k);(i)u(i);(k) + g(jk)
[
u(m);(j)�

(i)
(mk) − u(i);(m)�(m)(jk) +

@u(i);(j)
@�(k)

]
@�E
@�(i)

+ g(iq)u(p);(j)
@2�E
@�(k)�(i)

−g(iq)�(j)(ki)u(k);(q)
@�E
@�(j)

+ g(qj)u(i);(q)
@2�E
@�(k)�(i)

− g(qk)�(j)(ki)u(i);(q)
@�E
@�(j)

(6)

The vector forms of the partial di�erential equations, in Equations (1)–(3) were trans-
formed into the physical curvilinear component form. The full details of the derivation have
been previously described [20]. The repeated indices imply a sum. Here, xk are Cartesian
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coordinates, �i are curvilinear coordinates and �(i) are physical curvilinear coordinates. The
relationship between the two coordinate systems, �i and �(i), is de�ned as

�(i) = �(i)(�i) where ��(i) =
√
gii��i and gii=

@xj
@�i

@xj
@�i

(7)

The following relationships are used in Equations (4)–(6) as

g(ij) =
1√
gii

1√gjj gij where gij=
@xk
@�i

@xk
@�j

(8)

g(ij) =
√
gii

√
gjjgij where gij=

@�i

@xk
@�j

@xk
(9)

Components of the velocity vector, u(i), are de�ned as

u(i) = u · a (i) (10)

Here, the components of the velocity vector in Equation (10) have the same direction as that
of the coordinate line and have meaningful physical values. The vector dr can be used to
show the relationship between two di�erent covariant base vectors as

dr= ai d�
i= a(i) d�

(i) where ai=
@r
@�i

and a(i) =
@r
@�(i)

(11)

The relationship between two di�erent velocity components is de�ned as

u(j) = u(i)
√
gjj
@�j

@xi
(sum on i) and u(k)=

1√gjj
@xk
@�j

(sum on j) (12)

The velocity components u(i) in Equation (12) represent (u; v; w). The term u(k)(i) in
Equation (1) represent the covariant derivative of the contravariant physical velocity com-
ponents and is de�ned as

u(k)(i) = u
(j)�(k)(ji) +

@u(k)

@�i
(13)

�(k)(ij) are regarded as physical counterparts of the Christo�el symbols and are de�ned as

�(k)(ij) =
√
gkk√

gii
√gjj �

k
ij − �ki

gim
gii

√gjj �
m
ij (sum on m) (14)

�ki is the Kronecker delta function. �
i
jk is the Christo�el symbol of the second kind and is

de�ned as

�ijk =
1
2
gip

[
@gjp
@�k

+
@gkp
@�j

− @gjk
@�p

]
(sum on p) (15)
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Each term in Equation (1) is expressed as

(∇u) · u= u(k)u(i)(k)a(i) (sum on i and k)

∇P= g(ik) @P
@�(k)

a(i) (sum on i and k)

∇2u= g(jk)
[
u(m)(j) �

(i)
(mk) − u(i)(m)�(m)(jk) +

@u(i)(j)
�(k)

]
a(i) (sum on i; j; k and m)

[∇u+ (∇u)T] · ∇�E =[g(jk)u(i)(k) + g(ik)u(j)(k)]
@∇�E
@�(j)

a(i) (sum on i; j and k)

(16)

Each physical covariant base vector a(i) is independent; therefore the physical curvilinear
component form of RANS equations could be expressed as Equation (4). Each term in
Equation (3) is expressed as

∇2P=−g(jk)�(i)(kj)
@P
@�(i)

+ g(ij)
@2P

@�(j)@�(i)
(sum on i; j and k)

(∇u)T : ∇u= u(k)(i) u(i)(k) (sum on i and k)

∇2u · ∇�E = g(jk) @�E@�(i)

[
u(m)(j) �

(i)
(mk) − u(i)(m)�(m)(jk) +

@u(i)(j)
�(k)

]

(sum on i; j; k and m)

[∇u+ (∇u)T] : ∇(∇�E)=−[g(mj)u(k)(m) + g(mk)u(j)(m)]�(i)(kj)
@�E
@�(i)

+ [g(mj)u(i)(m) + g
(im)u(j)(m)]

× @2�E
@�(j)@�(i)

(sum on i; j; k and m)

(17)

Equations (4)–(6) are transformed once more to make a standard form for the �nite analytic
method. The stretched coordinates are used to make a standard form and are de�ned as

��i∗= 1√
gii

��i (18)

The standard form is given by

@2�
@�1∗@�1∗

+
@2�

@�2∗@�2∗
+

@2�
@�3∗@�3∗

=A
@�
@�1∗

+ B
@�
@�2∗

+ C
@�
@�3∗

+D
@�
@�
+ S� (19)

The � represents velocity components u(1), u(2), u(3), and P. Equation (19) is linearized by
assuming that A, B and C are constant over the local element. The non-linearity is approxi-
mately preserved by the iteration. Equation (19) is solved at the node points with the boundary
conditions speci�ed for the local neighbouring cell faces. The �nite analytic approach, based
on one-dimensional �nite analytic solutions, is described in the next section.
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3. DISCRETIZATION METHOD

A �nite analytic method was used to discretize the RANS equations, kinematic boundary
condition and pressure Poisson equation. The method is based on a one-dimensional �nite
analytic solution in a local cell. The discretization of Equation (19) is obtained using the
superposition of one-dimensional �nite analytical solutions [4]. The values on the cell faces
are interpolated using local analytic solution having a width of four nodal points. This scheme
is capable of evaluating non-uniform grid spacings and of capturing both steady and unsteady
solutions of the governing equations with �nite analytic boundary conditions [5].
Equation (19) is split into four one-dimensional equations

@2�
@�1∗@�1∗

− A @�
@�1∗

=G1 (20)

@2�
@�2∗@�2∗

− B @�
@�2∗

=G2 (21)

@2�
@�3∗@�3∗

−C @�
@�3∗

=G3 (22)

−D @�
@�
=G4 (23)

where

G1 =− @2�
@�2∗@�2∗

− @2�
@�3∗@�3∗

+ B
@�
@�2∗

+ C
@�
@�3∗

+D
@�
@�
+ S�

G2 =− @2�
@�1∗@�1∗

− @2�
@�3∗@�3∗

+ A
@�
@�1∗

+ C
@�
@�3∗

+D
@�
@�
+ S�

G3 =− @2�
@�1∗@�1∗

− @2�
@�2∗@�2∗

+ A
@�
@�1∗

+ B
@�
@�2∗

+D
@�
@�
+ S�

G4 =− @2�
@�1∗@�1∗

− @2�
@�2∗@�2∗

− @2�
@�3∗@�3∗

+ A
@�
@�1∗

+ B
@�
@�2∗

+ C
@�
@�3∗

+ S�

Equations (20)–(22) are elliptic PDEs, whereas Equation (23) is a hyperbolic PDE. The
source terms S�, G1, G2, G3, and G4 are assumed to be constant in a local cell. The length
of the local elements is de�ned as

h=��1∗=
1√
g11
; k=��2∗=

1√
g22
; l=��3∗=

1√
g33

(24)

The one-dimensional �nite analytic solution in each coordinate direction is obtained by
specifying the boundary condition at the boundaries of the local element and �xing the other
coordinate directions and time. For example, the analytic solution for the one-dimensional
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equation in Equation (20) can be de�ned as

�(�1∗)= a(eA�
1∗ − 1) + b�1∗ − S1

A
(25)

The coe�cients a and b are determined by applying the boundary condition at two end-
cell faces. The �nite analytic solutions for the one-dimensional equations (20) and (23) are
obtained as

�P = ad�d + au�u − CpxG1 (26)

�P = an�n + as�s − CpyG2 (27)

�P = ae�e + aw�w − CpzG3 (28)

�P = at�t + ab�b − CptG4 (29)

where

ad =
1− e−AhU =2

eAhD=2 − e−AhU =2 au=
eAhD=2 − 1

eAhD=2 − e−AhU =2 Cpx=
1
2A
hD(e−AhU =2 − 1) + hU (eAhD=2 − 1)

eAhD=2 − e−AhU =2

an =
1− e−BhS =2

eBhN =2 − e−BhS =2 as=
eBhN =2 − 1

eBhN =2 − e−BhS =2 Cpy=
1
2B

hN (e−BhS =2 − 1) + hS(eBhN =2 − 1)
eBhN =2 − e−BhS =2

ae =
1− e−ChW =2

eChE=2 − e−ChW =2 aw=
eChE=2 − 1

eChE=2 − e−ChW =2 Cpz=
1
2C

hE(e−ChW =2 − 1) + hW (eChE=2 − 1)
eChE=2 − e−ChW =2

at =0 ab=1 Cpt =
�t
2D

In Equation (26), the subscripts u and d denote the upstream and the downstream nodal faces
in the �1∗ coordinate direction. The value at point p is obtained from the values at the u and
d cell faces. The �nite analytic solution for the other equations can be obtained similarly. The
�nite analytic coe�cients in Equation (29) are approximated by assuming su�ciently large
positive value of D. The following relationship can be obtained by adding each equation in
Equations (20)–(23).

G1 +G2 +G3 +G4 = S� (30)

Finally, the �nite analytic scheme based on one-dimensional �nite analytic solutions is ob-
tained by substituting the equations for G1, G2, G3 and G4 in Equations (26)–(29) into
Equation (30) as

ap�P =
1
Cpx

[ad�d + au�u] +
1
Cpy

[an�n + as�s]

+
1
Cpz
[ae�e + aw�w] +

1
Cpt
[at�t + ab�b]− S� (31)
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Figure 1. Local element.

where

ap=
[
1
Cpt

+
1
Cpx

+
1
Cpy

+
1
Cpz

]

In order to obtain more highly accurate solutions, dependent variables on the cell faces are
interpolated by applying a one-dimensional analytic solution. The value on cell face u, in
Figure 1 can be solved analytically for a local cell by applying the boundary conditions at
points U and D, or at points UU and U. Here, the value on cell face u, obtained by applying
the boundary condition at points U and D, was di�erent from the value obtained by applying
the boundary condition at points UU and U. Therefore, in this work, the value � on the cell
face is de�ned by averaging the two as [5]

�d=
�+d + �

−
d

2
; �u=

�+u + �
−
u

2
; �n=

�+n + �
−
n

2
; �s=

�+s + �
−
s

2

�e=
�+e + �

−
e

2
; �w=

�+w + �
−
w

2
; �b=

�+b + �
−
b

2

(32)

�+u is de�ned by applying the boundary condition at points UU and U to Equation (25) while
�−
u is de�ned by applying the boundary condition at points U and D to Equation (25) as

�+u =C
+
UU1�UU + C

+
U1�U + C

+
P1�P (33)
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�−
u =C

−
U1�U + C

−
P1�P + C

−
D1�D (34)

Similarly, �+d and �
+
d are de�ned as

�+d =C
+
U2�U + C

+
P2�P + C

+
D2�D (35)

�−
d =C

−
P2�P + C

−
D2�D + C

−
DD2�DD (36)

Therefore, �u and �d on the cell face are expressed using Equation (32) as

�u=
C+UU1
2

�UU +
C+U1 + C

−
U1

2
�U +

C+P1 + C
−
P1

2
�P +

C−
D1

2
�D

�d=
C+U2
2
�U +

C+P2 + C
−
P2

2
�P +

C+D2 + C
−
D2

2
�D +

C−
DD2

2
�DD

(37)

where

C+UU1 =
−hUe−AhU =2+hU2 e

−AhU+
hU
2

hUUe−AhU−hUe−AhUU−(hUU−hU ) C+U1 =
hUUe−AhU =2+

hU
2
e−AhUU−

(
hUU−hU

2

)
hUUe−AhU−hUe−AhUU−(hUU−hU )

C−
D1 =

hUe−AhU =2−hu2 e
−AhU−hU

2
hUeAhD+hDe−AhU−(hU+hD) C−

U1 =
hDe−AhU =2+

hU
2
eAhD−

(
hD+

hU
2
hu

)
hUeAhD+hDe−AhU−(hU+hD)

C+P1 = 1− (C+UU1 + C+U1) and C−
P1 = 1− (C−

U1 + C
−
D1)

C+U2 =
hDeAhD=2−hD2 e

AhD−hD
2

hDe−AhU+hUeAhD−(hU+hD) C+D2 =
hUeAhD=2+

hD
2
e−AhU−

(
hU+

hD
2

)
hDe−AhU+hUeAhD−(hU+hD)

C−
D2 =

hDDeAhD=2−hD2 e
AhDD−

(
hDD−hD

2

)
hDDeAhD−hDeAhDD−(hDD−hD) C−

DD2 =
−hDeAhD=2+hD2 e

AhD+
hD
2

hDDeAhD−hDeAhDD−(hDD−hD)

C+P2 = 1− (C+D2 + C+U2) and C−
P2 = 1− (C−

DD2 + C
−
D2)

The values �n, �s, �e, and �w at the other cell faces can be obtained in the same manner. �+b
and �−

b in Equation (32) is de�ned as

�+b =C
+
BB1�BB + C

+
B1�B + C

+
P1�P where C+BB1 = − 1

2 C
+
B1 =

3
2 CP1 = 0 (38)

�−
b =C

−
B1�B + C

−
P1�P + C

−
T1�T where C−

B1 =
1
2 C

−
P1 =

1
2 CT1 = 0 (39)

Here, �BB=�n−1P , �B=�nP, and �P=�n+1P . The analytic coe�cients in Equations (38)
and (39) are approximated by assuming su�ciently large positive values of D. �b on the
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cell face is expressed as

�b= − 1
4�

n−1
P + �P�nP +

1
4�

n+1
P (40)

4. FORMULATION OF BOUNDARY CONDITIONS

When simulating free surface �ow around a ship hull, the computational domain is �nite
and boundary conditions must be imposed at the boundaries. Then the �ow �eld is solved
numerically in the �nite domain. To accurately solve this problem, appropriate boundary
conditions must be imposed. To preserve higher-order accuracy at the boundaries of the
computational domain, �nite analytic boundary conditions for the present higher-order �nite
analytic schemes are formulated for in�ow, out�ow, impermeable surfaces and the symmetry
surface. The basic principle underlying the derivation of �nite analytic boundary conditions is
to use the discretized form of the governing equations. On boundaries where viscous e�ects
can be considered to be negligible, the �uid is assumed to be inviscid. In this case, the
governing equations become hyperbolic di�erential equations

−A @�
@�1∗

=G1 where G1 =B
@�
@�2∗

+ C
@�
@�3∗

+D
@�
@�
+ S� (41)

−B @�
@�2∗

=G2 where G2 =A
@�
@�1∗

+ C
@�
@�3∗

+D
@�
@�
+ S� (42)

−C @�
@�3∗

=G3 where G3 =A
@�
@�1∗

+ B
@�
@�2∗

+D
@�
@�
+ S� (43)

The second derivative terms are added to the left-hand side of the above equations to make
the standard form of the �nite analytic method. Then, to minimize the e�ects of the second
derivative terms, they can be multiplied by very small values. Then, the �nite analytic solution
for the one-dimensional hyperbolic PDE can be solved in a similar manner (see Section 3).
The �nite analytic coe�cients are approximated according to the signs of A, B, and C:

If A¿ 0; ad=0; au=1; Cpx= hU =2A else ad=1; au=0; Cpx= − hD=2A
If B¿ 0; an=0; as=1; Cpy= hS=2B else an=1; as=0; Cpy= − hN =2B
If C ¿ 0; ae=0; aw=1; Cpz= hW =2C else ae=1; aw=0; Cpz= − hE=2C

Also, the analytic coe�cients at each cell face in Equation (37) are approximated as

If A¿0; C+UU1 =− hU
2(hUU − hU ) ; C+U1 = 1 +

(hU )
2(hUU − hU ) ; C−

U1 = 0:5; C−
D1 = 0

C+U2 =− hD
2hU

; C+P2 = 1 +
(hD)
2hU

; C−
D2 = 0:5; C−

DD2 = 0
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else C+UU1 = 0; C+U1 = 0:5; C−
U1 = 1 +

hU
2hD

; C−
D1 = − hU

2hD

C+U2 = 0; C+D2 = 0:5; C−
D2 = 1 +

hD
2(hDD − hD) ; C−

DD2 = − hD
2(hDD − hD)

�n, �s, �e, and �w, on the cell faces can be expressed similarly. The boundary conditions
are applied to the cell faces but not at the nodes. The present �nite analytic boundary condition
can be applied to both elliptic and hyperbolic PDEs.

4.1. At i=2 or j=2 or k=2 plane

In�ow, wall and symmetry conditions are given at i=2, j=2 and k=2 planes, respectively.
The boundary conditions on these planes depend on the signs of A, B, and C. On in�ow, vis-
cous e�ects are negligible and the boundary equations can be considered inviscid. The values
of the cell faces in Equation (31) must be speci�ed for co-directional and contra-directional in-
�ows. The �nite analytic coe�cients in Equation (31) and the velocity components at the cell
faces can then be approximated. The in�ow boundary conditions depend on the sign of A as

If A¿ 0; ad=0; au=1; Cpx=
hU
2A

�u = �−
u =C

−
U1�U + C

−
P1�P + C

−
D1�D where CU1 = 0:5 CP1 = 0:5 CD1 = 0

else ad = 1; au=0; Cpx= − hD
2A

�d =
�+d + �

−
d

2
=
C+U2
2
�U +

C+P2 + C
−
P2

2
�P +

C+D2 + C
−
D2

2
�D +

C−
DD2

2
�DD

C+U2
2
= 0

C+P2 + C
−
P2

2
=
1
4

C+D2 + C
−
D2

2
=
3
4
+

hD
4(hDD − hD)

C−
DD2

2
= − hD

4(hDD − hD)

When A is negative, no boundary condition is required because au=0 in Equation (31) and
C+U2 = 0 in Equation (37). When A is positive, however, a boundary condition must be ap-
plied. Here, we assume that �u=�−

u and �U =�P because the values of �UU and �U are
unknown. Therefore, we set �u=�U when A is positive. In summary, the boundary condition
on in�ow is as follows:

If A¿0; �u=�U else No boundary condition is needed

The above boundary conditions can be applied to velocity components and wave height. How-
ever, the boundary conditions for the pressure are di�erent; it is assumed that there is a zero
gradient.
Along the wall boundary, the components of velocity are known and a zero gradient is ap-

plied to the pressure. Viscous e�ects are considered at this boundary. The boundary conditions
at impermeable surfaces depend on the sign of B as follows:

If B¿0; �s=�S else �s=�−
s =C

−
S1�S + C

−
P1�P + C

−
N1�N
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We assume that �s=�−
s . Therefore, an approximate condition was used at solid wall bound-

aries.
On the symmetry plane, the values of �WW and �W are known from the symmetry condi-

tions. Figure 1 shows the positions of W and WW. The boundary condition at the symmetry
plane depends on the sign of C

If C ¿ 0; ae=0; aw=1; Cpz=
hW
2C

�w =
�+w + �

−
w

2
=
C+WW1
2

�WW +
C+W1 + C

−
W1

2
�W +

C+P1 + C
−
P1

2
�P +

C−
E1

2
�E

else ae = 1; aw=0; Cpz= − hE
2C

�e =
�+e + �

−
e

2
=
C+W2
2
�W +

C+P2 + C
−
P2

2
�P +

C+E2 + C
−
E2

2
�E +

C−
EE2

2
�EE

For any sign of C, no boundary condition is required.

4.2. At i= ni − 1 or j= nj − 1 or k= nk − 1 plane
Exit, lateral and upper boundary conditions are given at i= ni − 1, j= nj − 1 and k= nk − 1
planes, respectively. To accurately solve the free surface problem, one must impose appropriate
boundary conditions on these boundaries that allow waves to pass freely without spurious
re�ections through them. The e�ects of wave re�ections at open boundaries can seriously
degrade the accuracy of the computations, and may render the computational solution entirely
unacceptable. However, this is not a simple problem to overcome. For out�ow, boundary
conditions are applied at cell faces in Equation (31). Viscosity e�ects can be considered
negligible. The boundary conditions for the velocity components and wave height at the exit
plane depend on the sign of A as:

If A¿ 0; ad=0; au=1; Cpx=
hS
2A

�u =
�+u + �

−
u

2
=
C+UU1
2

�UU +
C+U1 + C

−
U1

2
�U +

C+P1 + C
−
P1

2
�P +

C−
D1

2
�D

C+UU1
2

= − hU
4(hUU − hU )

C+U1 + C
−
U1

2
=
3
4
+

hU
4(hUU − hU )

C+P1 + C
−
P1

2
=
1
4
C−
D1

2
=0

else ad = 1; au=0; Cpx= − hN
2A

�d = �+d =C
+
U2�U + C

+
P2�P + C

+
D2�D where C+U2 = 0 C+P2 = 0:5 C+D2 = 0:5

When A is positive, no boundary condition is required because ad=0 in Equation (31)
and C−

D1 = 0 in Equation (37). However, an appropriate boundary condition is required for
a negative A. Here, we assume that �d=�+d and �D=�P because the values of �DD and �D
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are unknown, therefore we set �d=�P. However, boundary conditions may yield small re-
�ections for the negative sign at open boundaries because of the above assumption. For the
pressure, a zero gradient is applied. After all assumptions have been incorporated, the bound-
ary condition at the exit plane is as follows:

If A¿0 No boundary condition is needed else �d=�P

The same boundary condition can be applied to other planes similarly.

5. LOWER-ORDER BOUNDARY CONDITION

The �nite analytic boundary conditions suggested in the present work is based on higher-order
accuracy. The boundary conditions are used at the cell faces on the boundaries. When the
comparative method is used, another type of boundary condition can be considered, which
can be applied directly at the nodes. Thus, Dirichlet and Neumann boundary conditions can
be applied on the boundaries. However, the boundary conditions are based on lower-order
accuracy and the accuracy can su�er near the boundaries.
Coe�cients a and b in Equations (25) are determined by applying the boundary condition

at the two end node points. The �nite analytic solution for the one-dimensional equations in
Equations (26)–(28) is rewritten as

�P = aD�D + aU�U − CPXG1 (44)

�P = aN�N + aS�S − CPYG2 (45)

�P = aE�E + aW�W − CPZG3 (46)

where

aD =
1− e−AhU
eAhD − e−AhU aU =

eAhD − 1
eAhD − e−AhU CPX =

1
A
hD(e−AhU − 1) + hU (eAhD − 1)

eAhD − e−AhU

aN =
1− e−BhS
eBhN − e−BhS aS =

eBhN − 1
eBhN − e−BhS CPY =

1
B
hN (e−BhS − 1) + hS(eBhN − 1)

eBhN − e−BhS

aE =
1− e−ChW
eChE − e−ChW aW =

eChE − 1
eChE − e−ChW CPZ =

1
C
hE(e−ChW − 1) + hW (eChE − 1)

eChE − e−ChW

The �nite analytic coe�cients on the boundaries where viscous e�ects can be negligible, are
approximated as

If A¿0; aD =0; aU =1; CPX = hU =A else aD=1; aU =0; CPX = − hD=A

If B¿0; aN =0; aS =1; CPY = hS=B else aN =1; aS =0; CPY = − hN =B

If C¿0; aE =0; aW =1; CPZ = hW =C else aE =1; aW =0; CPZ = − hE=C
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Equations (44)–(46) are used only on the boundary in each direction. Namely, on in�ow and
out�ow, the discretized form is expressed as

ap�P =
1
CPX

[aD�D + aU�U ] +
1
Cpy

[an�n + as�s] +
1
Cpz
[ae�e + aw�w]

+
1
Cpt
[at�t + ab�b]− S�

At impermeable surface and lateral boundary plane, the discretized form is expressed as

ap�P =
1
Cpx

[ad�d + au�u] +
1
CPY

[aN�N + aS�S] +
1
Cpz
[ae�e + aw�w]

+
1
Cpt
[at�t + ab�b]− S�

It is not necessary to interpolate dependent values at the cell faces. The discretized form at
other boundaries can be expressed similarly.

6. COMPUTATION

The pressure Poisson equation method and the kinematic boundary conditions are used to solve
the velocity–pressure–wave height coupling problem for the incompressible RANS equations.
The matrix, which consists of the coe�cients resulting from the �nite analytic method, is
solved using the generalized minimal residual (GMRES) method [21] to enhance the conver-
gence rate of RANS equations, the kinematic boundary condition and the pressure Poisson
equation. An interface-tracking method is used to de�ne the free surface as a sharp interface.
The meshes are �tted to the interface at each time step, and no interface smearing takes place.
Its upper boundary always coincides with the boundaries of the �uid �ow. The kinematic con-
dition is solved by using the momentum equations in a coupled manner and is itself used
to update the unknown location of the free surface. An unsteady structured grid generation
solver is used in this work [4]. The Baldwin–Lomax model was used with the wall function
to calculate the eddy viscosity in the turbulent �ow [22, 23].
The Wigley hull was used as a ship model. The simulation was performed for the hull

advancing in calm water. The example shown here is for the free-surface waves around a
Wigley hull. This is an example of an open boundary problem with far �eld boundaries. The
equation for the hull geometry is given by

z=
B
2

[
1−

(
2x
L

)2][
1−

( y
D

)2]

where B is the breadth, L is the length, and D is the draft of the ship. The computational
domain is one length on the side and one length below the ship hull. The upstream and
downstream boundaries were placed at a distance far away from the hull, x=L= − 3 and 6,
respectively. The boundary condition for P in Equation (1) on in�ow is set to zero. Also,
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turbulence kinetic energy, k is set to zero; therefore, the pressure in this plane is −z=Fn2.
For the computation of turbulent �ow, the spacing o� the body is very small, so the simple
Neumann condition is applied for the pressure. The wave generated in the interior of the
computational domain propagates to the open boundaries and leaves these boundaries. On
the open boundary, the non-re�ecting boundary condition should be applied to pass the wave
through the open boundary.
The three-dimensional free-moving turbulent �ow was computed. The upper boundary

moves arbitrarily with the �ow, and the grid in the computational domain is generated every
time step until the steady state solution is obtained. Only two iterations for each time step
were used for computing the higher order e�ect of all equations. No acceleration of the �ow
was used to reach the �nal speed. All computations were performed by an implicit method
without adding any arti�cial dissipative terms. The computations were performed without a re-
laxation factor. The time increment of 0.005 was used for two di�erent Froude numbers, 0.267
and 0.289. The Reynolds number used in the computation was 3:3 × 106. All computations
were executed with a grid size of 127× 45× 35. All computations were performed for 1200
time steps of 6 s each. However, the converged state near the hull surface was reached within
a mere 400 time steps. Convergent steady-state results for the Wigley hull were compared
with experiment data and the data were taken from References [24–26]. The simulations are
performed to demonstrate the validity of the present higher-order �nite analytic scheme. Two
di�erent boundary conditions are applied on the boundaries for each simulation. The calcu-
lated results are compared with available experimental data at two Froude numbers, 0.267 and
0.289. Figures 2 and 3 show a comparison of free surface pro�les on the hull surface. The
two di�erent boundary conditions, lower-order and higher-order, were compared. In Figure 2,
a deviation of wave pro�les between experiments and computations was observed in the bow
region. The bow peak is not captured properly. A deviation in the bow waves is also found at
Fn=0:289. The higher-order boundary condition was used at the cell faces on the boundaries,
while the lower-order condition was applied at the nodes. The higher-order condition does not
seem to give a more accurate prediction of the free surface pro�les on the hull surface than
the lower-order condition. Figures 4 and 5 show wave elevation contours at Fn=0:267 in
the upper boundary of the Wigley hull at two di�erent time steps. Due to the approximations
assumed at open boundaries, small re�ections were created, but were not serious and could
reasonably be ignored. The two di�erent boundary conditions were compared. The divergent
and the transverse waves are observed. The simulations model the near-�eld waves accurately.
However, there is a glaring discrepancy in the far �eld at y=L¿0:2 o� the hull surface. The
in�uence of the higher-order e�ects is found in the far �eld; speci�cally, the far �eld waves
are underpredicted by the simulation that uses the lower-order boundary condition. The im-
provement achieved by the present scheme was obtained in far �eld by using higher-order
�nite analytic boundary condition. Experimental data are available for Fn=0:267. This gives
a perspective view of the free surface waves. Figure 6 shows a comparison of wave eleva-
tion contours at t=6 s with experimental data. The higher-order boundary condition could
be applied to improve the accuracy of the solution for the far �eld waves. Figure 7 shows
a comparison of wave elevation contours at another Fn. The grid and the computational do-
main are the same as those for Fn=0:267. The improvement in far �eld is also found. The
far �eld waves may di�er due to the e�ects of the grid size and the grid density. For the
same size and density of a grid, however, it can be concluded that the improvement in far
�eld waves is due to the higher-order at the boundaries. Therefore, some improvement on the
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Figure 2. Comparison of free surface pro�les on hull surface at Fn=0:267.
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Figure 3. Comparison of free surface pro�les on hull surface at Fn=0:289.
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Lower-order boundary condition

Finite analytic boundary condition

Figure 4. Comparison of wave elevation contours at t=2 and Fn=0:267.

Lower-order boundary condition

Finite analytic boundary condition

Figure 5. Comparison of wave elevation contours at t=4 and Fn=0:267.

waves could be achieved with the higher-order boundary condition. It was shown that more
computational time steps were needed to get a su�ciently accurate free surface prediction at
distances far away from the hull.
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Figure 6. Comparison of wave elevation contours at t=6 and Fn=0:267.

0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000
-0.001
-0.002
-0.003
-0.004
-0.005
-0.006
-0.007
-0.008
-0.009
-0.010
-0.011
-0.012

Lower-order boundary condition

Finite analytic boundary condition

Figure 7. Comparison of wave elevation contours at t=6 and Fn=0:289.
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7. SUMMARY

A novel approach to numerically simulate incompressible free surface �ows based on physical
curvilinear coordinate system was investigated. A higher order �nite analytic scheme based
on a one-dimensional analytic solution was applied to the discretization of the incompressible
RANS equations, the kinematic boundary condition and the pressure Poisson equation. Finite
analytic boundary conditions based on higher-order schemes were proposed for in�ow, out-
�ow, symmetry plane and impermeable surfaces. At the boundaries, two di�erent �nite analytic
boundary conditions have been suggested. One is lower-order and the other is higher-order.
The numerical results for the computations of free surface �ow around a Wigley hull demon-
strated here indicated that the present numerical scheme and boundary conditions were adapted
to three-dimensional incompressible free surface �ow. Two di�erent �nite analytic boundary
conditions were compared through the computations of the free surface �ow. This comparison
demonstrated that the use of the higher-order boundary condition was necessary to achieve a
su�ciently accurate far �eld prediction. It was shown that a new numerical scheme and new
boundary conditions could be used to solve three-dimensional elliptic and hyperbolic PDEs.
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